Development of Sensors for Automotive PEM-based Fuel Cells

Brian A. Knight UTRC

Presented at the DoE New Project Kickoff Meeting October 30, 2001

Development of Sensors for Automotive PEM-based Fuel Cells

- Contractor: International Fuel Cells
- Subcontractors to IFC
 - ATMI
 - NexTech Materials
 - Illinois Institute of Technology (IIT)
 - UTRC
- Project Duration: 36 months
- Total Cost: \$3.5M; DoE Cost: \$2.8M
- UTRC Technical Leader: Mr. Bernard Woody
 - Senior Research Scientist
 - Phone: 860-610-7212; FAX: 860-610-2151
 - email: woodyba@utrc.utc.com

Sensor Program Objectives

- Sort the market of commercially available sensor technologies and qualify those which are currently ready or adaptable to PEM fuel cell application.
- Develop a supplier base from which IFC can obtain needed sensor technologies.
- Partner with companies to develop and commercialize required sensors.

Desired Sensor Characteristics for Modern Automobiles

- A specific design, evaluated, and commercially available with high performance is needed with the following characteristics
 - Survivability (> 5000 operating hours).
 - Sensitivity and Quick Response.
 - CO: three ranges, 0.1 to 1 sec response
 - H₂: 0.1 100%, < 1 second response
 - Sulfur Compounds: 0.05 0.5 ppm, < 1 min. response
 - NH₃: 1 10 ppm, response time in seconds
 - O2: 0 50%, < 0.5 second response
 - Physical Sensors: 30-75% H₂, CO₂, N₂, H₂O, CO environment at up to 3 atmospheres pressure.

Sensor Needs and Requirements for Fuel Cell Vehicles*

Chemical sensors

- Process streams: before, in, and after reformer, before and in fuel cell stack: CO, H₂, O₂, H₂S, NH₃.
- Safety [H₂].
- Response times compatible with function being monitored.

Physical-parameter sensors - process only

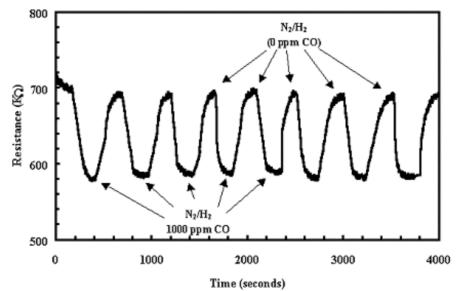
Mass flow; temperature [thermocouples (70-90°C)]; pressure;
 relative humidity; level and flow switches.

* based in part on: DOE Workshop; "Sensor Needs and Requirements for Fuel Cells and CIDI/SIDI Engines," Robert S. Glass, Ed., published by Lawrence Livermore National Laboratory, April, 2000.

Sensor Program Milestones

TASK	MILESTONE #	MILESTONE	MILESTONE DATE
Physical Sensor	1	Sensor Performance Review	11/01/02
Development	2	Proto Delivery to IFC	04/01/03
Electrochemical	3	Sensor Performance Review	10/01/02
Sensor Development	4	Proto Delivery to IFC	03/01/04
MEMS Sensor	5	Sensor Performance Review 1	10/01/02
Development	ent 6 Sensor Performance Review		05/01/03
7 Ser		Sensor Performance Review 3	10/01/03
	8	Proto Delivery to IFC	05/01/04
Independent	9	Sensor Suite Delivery to DOE	9/3/2004
Validation			

Requirements: Physical Parameter Sensors

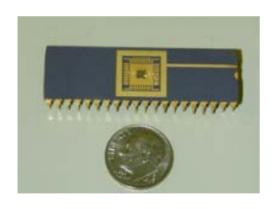

Sensor Types	Measurement Range	Operational Temperature	Response Time	Accuracy	Gas Environment
Flow rate sensors (in-stack)	30 – 300 L/min	80 °C	N/A	N/A	
Temperature sensors (pre-stack, ambient)	-40°C / +150°C	N/A	< 0.5 sec at -40 – 100 °C < 1 sec at 100 – 150 °C	1.5 % at -40 – 100 °C 2% at 100 – 150 °C	High humidity and reformer exhaust. H ₂ at 30 – 75 % with CO ₂ , CO, N ₂ , H ₂ O at 1 –3 atm total pressure and trace NH ₃ , H ₂ S, HC.
Relative humidity sensors (pre-stack, ambient)	20 – 100 %	30 °C – 110 °C		1 %	
Differential pressure sensors* (pre-stack)	0 - 1 psig (or 0 - 10 & 1 - 3 psig)	30 °C – 100 °C with -40 °C survivability	< 1 sec	1 %	

^{*} Size: 1 square inch and without orientation problem

^{*} Must be able to withstand and measure both liquid and gas phases

Electrochemical Sensors

- NexTech Materials
 - CO, SO₂, H₂S, and NH₃
 - Demonstrated sensitivity for ppm CO in 75% H₂




Effect of carbon monoxide (1000 ppm) on resistance of NexTech sensor in a baseline gas composition of 50% hydrogen and 50% nitrogen.

MEMS Sensor Development

ATMI

- H₂, SO₂, H₂S, NH₃.
- Patented micro hotplate for H₂ detection.

